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Abstract

Although perfectly scalable items rarely occur in practice,

Guttman's concept of a scale has proved to be valuable to the

development of measurement theory. If the score distribution is

uniform and there is an equal number of items at each difficulty level,

both the elements and the eigenvalues of the Pearson correlation matrix

of dichotomous Guttmanscalable items can be expressed as simplr:

functions of the number of items. Even when these special conditions

do not hold, the values of the correlations can be computed easily by

assuming a particular score distribution. These findings are useful in

conducting research on the properties of scales.
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Guttman (1941, 1950a) developed the concept of an idealized

type of attitude scale with the following property: "Persons who

answer a given question favorably all have higher ranks on the scale

than persons who answer the same question unfavorably. From a

respondent's rank or scale score we know exactly which items he

endorsed" (Suchman, 1950, p. 9). Although sets of items that

follow this pattern rarely occur in practIce, the concept of

Guttman-scalable items has proved to be useful in the development of

measurement theory. The properties described in this paper apply

only to dichotomous Guttman items, though Guttman's theory comprises

items with multiple score categories. To simplify the discussion, it

will be assumed that these are cognitive items that are either correct

or incorrect. For the case of cognitive rather than attitude items, the

analogue of the scalability property described above is that items can

be ordered according to difficulty such that individuals who answer a

given item correctly also answer all previous items correctly.

One well-known property of dichotomous Guttman items

is that, for n items, no two of which have the same marginals, the

Pearson (phi) correlation matrix is of rank n (e.g. TorgersoL, 1958,

p. 312), despite the fact that the items can be ordered along a

single dimension. It can be demonstrated that under certain uniformity

conditions, both the elements and the eigenvalues of the Pearson

correlation matrix, t can be expressed as simple functions of the

number of items. These results are closely related to Guttman's

(1941, 1950c) findings on the principal components of scale

analysis. Using a method that is now known as multiple
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correspondence analysis, Guttman obtained the latent structure of a

transformation of the matrix of iter responses. He did not,

however, express the eigenvalues as simple functions of the number

of items, nor did he point out the relation between the latent

structure he derived and that of the phi matrix.

An understanding of the structure of the Pearson correlation

matrix of Guttman items is of value in conducting research on the

properties of scales. For example, in investigating methods of

dim lsionality assessment for dichotomous data, it is useful to

determine the results of applying potential methods to Guttman items.

It is advantageous to be able to generate the desired correlation

matrices without generating the item responses themselves. A general

form for the eigenvalurs of the Pearson correlation matrix is also

useful; these eigenvalues can be regarded as a standard to which the

roots of other proximity matrices tan be compared.

Notational Scheme

Table 1 gives a schematic representation of admissible response

patterns, called a scalogram, for a set of n "types" of Guttman

scalable dichotomous items. In Guttman's terminology, items with the

same marginal distribution (proportion correct) are said to be of the

same type. The n + 1 rows of Table 1 correspond to the n + 1

permissible response patterns. The first n columns correspond

8
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Table 1

Indicator Matrix for

Admissible Response Patterns

Item

for n Dichotomous Guttman Items

Incorrect Responses Correct Responses

1 2 n 1 2 n Row Total

Frequency

of

Respondents

1 1 1 1 0 0 ... 0 n fl

2 0 1 1 1 0 ... 0 n f2

Response 3 0 0 1 1 1 ..s n f3

Pattern . ... ... .

. ... ... .

.

n + 1 0 0 0 1 1 .. 1 n fn+1

Column Total 1 2 .. n n n-1 .. 1 n(n+1)

Frequency of 2 n n+1 n+1 n+1

Responses fl /
i=1

fi / fi
i=1

/ fi
i=2

/ fi s's fn+1
i=3

F = fi
i=1
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to incorrect reponses to the n items; the next n columns correspond

to correct reponses. In the body of the table, ones indicate cells

in which observations occur, according to the definition of a Guttman

scale; zeroes indicate cells in which it is impossible for

observations to occur. The row and column totals shown on the inner

margins of the table are the totals of the indicator variables. The

outer margins of Table 1 give the number of subjects for each row and

column of the table. The notation fi represents the number of

subjects giving response pattern i.

To simplify the presentation in this paper, the following

assumptions are made:

1. There is a uniform number of items per type. Letting hk

denote the number of items of type k, k 1, 2, ... n, this assumption

can be expressed as 111 h2 hn h. The results

presented here concerning the elements and eigenvalues of t hold

regardless of the value of h, provided that it is constant for all

types. Therefore, it can be assumed without loss of generality that

h 1; that is, there is only one item per type. Because two

Guttman-scalable items with the same proportion correct must have a

Pearson correlation of 1, another way of stating this assumption is

that no two items are perfectly correlated.

2. The frequencies are the same for each response pattern, i.e.,

fl f2 ..0 ' fn+l f. (For Guttman items, there is a one-to-one

correspondence between response patterns and number-right scores.

Therefore, another way of stating this condition is that the frequencies

10



Item i

Table 2

Response Frequencies for Two Dichotomous

Guttman Items, i and j (i < j)

Under Uniformity Conditions

Item j

Correct (1) Incorrect (0) Total

Correct (1) n + 1 - j i i n + 1 - i

Incorrect (0) 0 i i

n+ 1

Page 7
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are the same for each number-right score.) This assumption and the

assumption that all hk = h are referred to jointly as the uniformity

conditions. Because the value of f does not affect the validity of the

results presented here, we can assume f = 1. Based on the uniformity

conditions and the further assumptions that h = 1, f = 1, the indicator

variables and inner margins of Table 1 can then be treated as

fre,uencies.

The Pearson Correlation between Guttman Items

The phi correlation between two items, i and j, can be expressed as

fllf22 fl2f21
.ij a [1]

VT7-7-7-iFT;Fi;

where frc represents the frequency in the r,c cell of the 2 x 2 table

of responses to a pair of items, r = 1, 2; c = 1, 2; f+c is the

marginal frequency for column c and fr+ is the marginal frequency for

row r. For a pair of Guttman items, the frequencies in the 2 x 2

table are as snown in Table 2 for two items, i and j, where i < j

(that is, item i is easier than item j). The number of subjects who

get both items right is equal to the total number of subjects, n + 1,

minus the index of the harder item, j. The number of subjects who get

11
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item i correct and item j wrong is simply the difference between their

indices, j - 1. Because i is the easier item, the number of subject,

who answer both items incorrectly is equal to i. Finally, there can

be no subjects who get item i wrong, but get item j correct. Using

the computational formula in equation 1, the phi coetficient for items

i and j can be computed as

(n + 1 - j)(i)
.ij [2]

+ 1 - j)(j)(n + 1 - i)(i)

(n + - )

(n + 1 - i) , i < j

An alternative derivation of equation 2 can be obtained by observing

that, in a Guttman scale, the inter-item correlation is the maximum

that can be achieved, given the marginal distributions for the

items. The maximum phi coefficient that can be obtained from items

with proportions correct pi and pj is

1/Pj (1 - Pi)
Max (pij)

Pi (1 Pj) 9 Pi Pj
[31

(Lord and Novick, 1968, p. 347). Guttman (1950b, p. 203) expresses

the correlation between scalable items in a an equivalent form.

This equation applies even if the uniformity conditions do not hold.

Now, by noting that, under the uniformity conditions, the proportion

13
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correct for the ith item in a Guttman scale can be expressed as pi

(n + 1 - i)/(n + 1), equation 2 can be obtained from equation 3.

It is useful to note that the expression for the correlation of

the first with the nth item can be simplified: Letting i 1 and

j n in equation 2,

1 (n + 1 - n)
.1,n lin (n + 1 - 1)

IT-1 1 .

n

[4]

Equation 2 can also be simplified slightly for the case of adjacent

items. Letting j i + 1, equation 2 becomes

Ii (n - i)
1,1+1 (i + 1) (n + 1 - i)

[5]

The correlation of the first with the second item and the

second-last with the last item can both be simplified further. For

1, j 2 or i n - 1, j n, equation 5 becomes

1,2 n-1,n 2n
[6]

Thus, for a given number of items, these two "border" correlations

are always equal. In fact, Lecause the correlation matrix satisfies

the definition of a simplex (Guttman, 1954, p. 274), it is symmetric

with respect to its minor, as well as its major diagonal.

14
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Eigenvalues of the Pearson Correlation Matrix

A scalogram for three Guttman items is given in Table 3.

Because of the assumptions h = 1, f = 1, Table 3 is also a frequency

table. Under the uniformity conditions, the correlations for n = 3

Guttman items can be found from equations 4 and 6 to be 1,2 =

.2,3 = 1.17 and .1,3 = 1/3. This can be verified by computing the

correlations directly from Table 3. The eigenvalues of this matrix are

found to be 2, 2/3, and 1/3. To obtain an expression for the

eigenvalues in terms of n, we can express the correlations as in

equations 4 and 6 and then obtain a cubic equation for the eigenvalues,

Xi, in terms cf n. We find that the cubic equation can be factored as

follows:

[X - (n + 1)12] [X - (n + 1)16] [X - (n + 1)112] = 0

The roots can be expressed more generally as

Xi = (n + 1)/[i(i + 1)], [7]

a result that holds for any n.1 The smallest eigenvalue is thus

Xn = (n + 1)1 In (n + 1)] = l/n; the largest is X1 = (n + 1)/2 . Note

that the proportion of variance attributable to the first principal

component X1/n = (n + 1)/2n, approaches 1/2 as n approaches

infinity, a somewhat surprising result.

15
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Table 3

Frequency Table for

Three Dichotomous Guttman Items

Incorrect Responses Correct Responses

Item 1 2 3 1 2 3 Row Total

Response 1 1 1 1 0 0 0 3

Patterns 2 0 1 1 1 0 0 3

(Subjects) 3 0 0 I 1 1 0 3

4 0 0 0 1 1 1 3

Column Total 1 2 3 3 2 1 12
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In discussing the principal components of scale analysis,

Guttman (1941, 1950c) does not analyze the correlation matrix.

Instead, he derives the latent structure of related matrices that

are transformations of the matrix of item responses. In the case of

n dichotomous items, his 9 matrix (1941, p. 331) is of dimensions

2n x 2n and can be expressed as

1

G = D
-1/2

(S'S - cc') D
-112

-c F -c
[8]

where S denotes the (n + 1) x 2n matrix of item responses (e.g., Table

3), s is the 2n x 1 vector of column frequencies of S, F = n + 1 is the

number of subjects, and D
-1/2

is the diagonal matrix of reciprocal
c

square roots of these column frequencies. (For f > 1, the number of

rows of S would be expanded so that there were f rows for each of

the n + 1 response patterns. The sample size F = f(n + 1) would be used

in Equation 8. The dimensions of G would be unchanged. For h > 1,

the number of columns of G would be expanded so that there were 2h,

instead of 2, columns for each type of item. In this case, G would

be of dimensions 2hn x 2hn.) A general element of G can be expressed

as

F
Pq

-
gpq

F F
q

[9]

where F and Fq denote the number of individuals in columns pP

and q, respectively, of S (p, q = 1, 2, 2n), and Fpq denotes the

number of individuals who are represented in both columns p and q of
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S. Guttman states that "this clement is recognized to be precisely

that used in the chi-square test of significance of association

between two attributes" (Guttman, 1941, p. 332). More

specifically, the Pearson chi-squared statistic for a pair of items

is equal to the sum of squares of the four appropriate elements

gpq of 9 (see tqliation 11), multiplied by the sample size, F.

Noting that, for any two items represented in the scalogram,

2 2
Xij

[10]

we observe that the elements gpq might be described more precisely

as components of 2. In fact, the relation between the elements

of the PearsoAlitrix and the elements of G can be expressed as

(.2 2 .2 .2 )1/2
'6ij gi,j+n 6i+n,j ei+n,j+n
lt.2 .2

i+n,j+n)
31/2r

".51j 6

For illustration, let us use Equation 11 to calculate $1,2 from

G for the data of Table 2. The c and t matrices corresponding to

Table 3 are given in Table 4. $1,2 can be obtained from the

elements of G as follows:

(.2 .2 .2 .2 N1/2
$1,2 512 5515 642 645 '

[.352 + (-.35)
2
+ (-.20)

2
+ .202]1/2

[2(.352 .202)31/2 4
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Table 4

t and c Matrices for

n = 3 Guttman Items under

Uniformity Conditions

1.00 .58 .33

.58 1.00 .58

.33 .58 1.00

9

.75 .35 .14 -.43 -.35 -.25

.35 .50 .20 -.20 -.5 -.35

.14 .20 .25 -.08 -.20 -.43

-.43 -.20 -.08 .25 .20 .14

-.35 -.50 -.20 .20 .5 .35

-.25 -.35 -.43 .14 .35 .75

2 2 2 2 ,1/2
ij = (gij gi,j+n gi+n,j gi+n,j+n)

2 2 1/2
= [2(gij + gi411,j+n)j

1 9
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Because G has two row; and columns corresponding to each item, one

for the correct response and one for the incorrect response, it may

be regarded as a redundant means of expressing the Pearson matrix,

t. 9 has n non-zero roots, which are identical to those of t .

Guttman (1950c) finds the latent structure of two transformations, A

and 23 (pp. 338-339), of S that differ slightly from C. Because A

and B ace the minor product moment and major product moment

matrices, respectively, of a rescaled version of S, their non-zero

roots are identical. There are n roots that are 1/n times the roots

of t or 9, as well as an extraneous root of 1. The non-trivial

roots of A and B are interpretable as squared correlation ratios.

The largest non-trivial root of A is equal to the maximum value of

the ratio of variance between categories (between columns of S) to

total score variance, obtained by assigning scores to subjects (rows

of S) in an optimal fashion. Similarly, the largest non-trivial

root of B is the maximum value or the ratio of variance between

subjects (rows of S) to total variance, obtained by assigning

weights to categories (columns of S) in an optimal way. The

succeeding roots are the maximum squared correlation ratios for the

residualized matrices. Analysis of multiway contingency tables

through derivation of the eigenstructures of transformed response

matrices such as p, A, and B is now commonly referred to as multiple

correspondence analysis (see Tenenhaus and Young, 1985, for an

extensive review and Zwick and Cramer, in press, for an illustration

of the relation between this approach and other multivariate

techniques in the case of a two-way contingency table).

20
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Discussion

Under certain uniformity conditions, the elements and

eigenvalues of the Pearson correlation matrix for dichotomous

Guttman items can be expressed as simple functions of tha number of

items. These relations may prove to have applications in the

investigation of the properties of scales. For example, in

conducting research on the dimensionality of dichotomous data, it is

of interest to determine the results of applying potential methods

of dimensionality assessment to perfect Guttman scales. A method

cannot be considered acceptable if it is known to produce the wrong

answer for dichotomous items. Equations 2, 4, 5, and 6 allow the

generation of the desired correlation matrices without generation of

the item responses themselves. Equation 7 may also be useful;

eigenvalues of possible transformations of t (e.g., see the section on

image analysis in Zwick, 1986) or of other proximity matrices can be

compared to "baseline" values obtained from Equation 7.

It is important, however, to recognize the effect of relaxing the

assumption that all fk = f. (The assumption that all hk = h = 1 is not

implausible; furthermore, if two items arc perfectly correlated, one

can be discarded without loss of information.) The results of allowing

the fk to be unequal can best be demonstrated by example. Suppose once

again that n = 3, producing n + 1 = 4 response patterns. It is likely

that the intermediate response patterns, 2 and 3, will be more common

than 1 and 4, which represent allincorrect and allcorrect patterns,

respectively (see Table 3). Let us assume a simple model in which

21
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f4 fl and f2 f3 kfl, where k is a positive integer. The values

of the correlation coefficients and the largest eigenvalue, Al, of

are given in Table 5 for selected values of k. The correlation

coefficients can be computed by first notinF! (e.g., from Table 1) that

under the hypothesized model, the proportions correct for the three

items are pl NI (1 + 2k)/(2 + 2k), p2 IN (1 + k)/(2 + 2k) 1/2, and p3

11(2 + 2k). Then by application of equation 3, the correlation

coefficients are found to be $12 NI $23 IN 111(1 + 2k) and $13 IN 1/(1 +

2k) (The values of Al in Table 5 were obtained numerically,) A value

of k 1 corresponds to the case discussed above, in which all fk f.

It is clear that as k increases and the distribution of subjects becomes

more peaked, the interitem correlations become smaller. This is not

surprising when we consider that, for a fixed scale score, Guttman items

are independent of one other. In fact, it is easily verified that, for

any pair of adjacent score patterns, any two Guttman items are

independelt. By making k larger, we are increasing the proportion of

subjects whose scale scores are 1 or 2. By the time we reach k IN 100,

t begins to resemble the identity matrix. In short, the properties of

the correlation matrix of dichotomous Guttman items can be affected

substantially by the distribution of subjects.
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Table 5

Values of Correlation Coefficients (.ij)

and Largest Eigenvalue (A1) for

Selected Values of kl

k +1,2 " +2,3 +1,3 Ai

1 .58 .33 2.0

2 .45 .20 1.7

10 .22 .05 1.3

100 .07 .01 1.1

lit is assumed that n = 3, f4 . fl, and f2 = f3 = kfl.
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Of particular interest is the case in which scores follow a normal

distribution. For n 8 items, Table 6 shows the proportions correct

for each item and the eigenvalues of * under two conditions: (a) a

uniform distribution of numoerright scores, as above, and (b) an

approximately normal distribution of numberright scores, created by

setting fl f9 4, f2 f6 7, f3 f7 12, f4 f6 17, and f5 20.

Under the normal conditions, the proportions correct for the items are no

longer equally spaced, as they are under the uniform conditions. The

largest eigenvalue is smaller than in the uniform case; the remaining

roots are larger. The results for the normal case, as well as the results

for k 2 in Table 5, show that substituting a more realistic score

distribution for the uniform distribution does not result in an increase

in the size of the first eigenvalae. In fact, the size of the first root

is largest for Ushaped distribution; that is, when therg are more

subjects in the extreme score patterns and fewer in the intermediate

patterns.

If the researcher wishes to know the size oZ the correlations and the

roots of the correlation matrix for n Guttman items with a symmetric

score distribution, the values obtained from Equations 2, 4, 5, 6, and 7

may be adequate estimates. An alternative is to assume a specific score

distribution and apply procedures analogous to those used to obtain the

values in Table 5.
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Table 6

Proportions Correct and Eigenvalues of t for

Eight Guttman Items Under Two Conditions

Proportions Correct

Approx.
Uniform Normal

Eigenvalues

Approx.
Uniform Normal

.89 .96 4.5 3.5

.78 .89 1.5 1.7

.67 .77 .8 1.0

.56 .60 .5 .6

.44 .40 .3 .4

.33 .23 .2 .3

.22 .11 .2 .3

.11 .04 .1 .2
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Footnote

lIn an appendix to an article on factor analysis of Guttman-scalable

items, Burt (1953, p. 21) gives the same expression for the

"factor-variances" obtained by analyzing a matrix of "product moment

coefficient[s] applied to the data after they have been transformed

to standard measure" (1953, p. 11). The scores he describes are

obtained from the items by subjects matrix of 0-1 item responses by

multiplying by n and then centering each row. Burt makes a clear

distinction between a correlation based on standardized scores and a

"product-moment correlation for a twofold point distribution (0)"

(Burt, 1950, 169; 1953, p. 20). In fact, if correct responses

to an item, k, are assigned a score of ak and incorrect responses a

score of bk, then Oij is invariant across all possible values of ak

and bk, k j. The correlations described by Burt are therefore

identical to phi coefficients. Because his factor-variances are

obtained through principal component analysis of the correlation

matrix, they are identical to the eigenvalues of t.
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